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Over the past few decades, methods for classification and detection of rhythm or morphology abnormalities in
ECG signals have been widely studied. However, it lacks the comprehensive performance evaluation on an open
database. This paper presents a detailed introduction for the database used for the 1st China Physiological
Signal Challenge 2018 (CPSC 2018), which will be run as a special section during the ICBEB 2018. CPSC 2018
aims to encourage the development of algorithms to identify the rhythm/morphology abnormalities from 12-lead
ECGs. The data used in CPSC 2018 include one normal ECG type and eight abnormal types. This paper
details the data source, recording information, patients’ clinical baseline parameters as age, gender and so
on. Meanwhile, it also presents the commonly used detection/classification methods for the abovementioned
abnormal ECG types. We hope this paper could be a guide reference for the CPSC 2018, to facilitate the
researchers familiar with the data and the related research advances.
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1. INTRODUCTION
Cardiovascular diseases (CVDs) continue to be the leading cause
of morbidity and mortality worldwide.1 An estimated 17.5 mil-
lion people died from CVDs in 2012, representing 31% of
all global deaths (WHO 2015).2 Electrocardiogram (ECG) sig-
nal is the expression of the myocardium electrical activity on
the body’s surface. It can provide important information about
the status of cardiac activity3 and is commonly used to detect
rhythm/morphology abnormalities. The standard 12 lead ECGs
has been an important tool for clinicians to diagnose heart
diseases.

Over the past few decades, methods for classification and
detection of rhythm or morphology abnormalities in ECG sig-
nals have been widely studied. Many methods have demonstrated
potential to accurately detect pathologies in clinical applications.1

Unfortunately, the current works lack comprehensive compar-
isons performed on as many as heart abnormal types. Existing

∗Author to whom correspondence should be addressed.

works focus on single or a few combination, such as atrial
fibrillation,4�5 while some studied ST changes.6�7

The China Physiological Signal Challenge (CPSC) 2018
(http://www.icbeb.org/Challenge.html) attempts to address this
issue by contributing a more comprehensive database. The sig-
nals of this database (9,831 records from 9458 patients with a
time length of 7–60 min) came from 11 hospitals, containing
nine types: one normal ECG type and eight abnormal types. The
purpose of this paper is to provide a detailed description for the
challenge data and a concise introduction for the existing meth-
ods, to help researchers familiar with the data and the related
research advances.

2. BRIEF REVIEW ON THE RHYTHM/
MORPHOLOGY ABNORMALITIES
CLASSIFICATION METHODS

2.1. Atrial Fibrillation
Atrial fibrillation (AF) is a serious cardiovascular disease with
the phenomenon of beating irregularly. In 2003, the European
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Society of Cardiovascular Diseases and North American Asso-
ciation of Pacing and Electrophysiology Arrhythmia divided
atrial fibrillation into paroxysmal atrial fibrillation, persistent
atrial fibrillation and permanent atrial fibrillation based on the
time of atrial fibrillation episode.8 There are many well-known
schools and institutions that have established large-capacity,
multi-category, and well-annotated databases for AF studying
work, such as the MIT-BIH database,9 the AHA database,10 and
the ST-T ECG database.11 The automatic AF detection is divided
into two major categories: one based on the characteristics of
atrial activity; one atrial fibrillation based on the characteristics
of the RR interval. The success of the PhysioNet/Computing in
Cardiology Challenge 2017 of “AF Classification from a short
single lead ECG recording” significantly promotes the process of
AF detection research.12

In 2000, Andrikopoulos et al. defined the square of the P -wave
standard deviation in ECG signals as P -wave variability. This
value could represent the changes of atrial activity characteris-
tics in atrial fibrillation process. Using 12-lead ECG data from
60 normal subjects and 50 AF subjects to verify the perfor-
mance, 88% sensitivity and 75% specificity were obtained.13

Lepage et al.14 used wavelet transform and Hidden Markov Mod-
els (HMM) to extract the P waves from 63 normal and 82 AF
patient records. Specificity and sensitivity obtained were 65% and
70%, respectively. Maji et al.4 presented a method of automatic
detection of AF by using higher order statistical moments of
ECG signal in Empirical Mode Decomposition (EMD) domain.
The performance of this method was tested on the MIT-BIH
arrhythmia database with Sensitivity of 96% and Specificity of
93%. Teijeiro et al.15 employed a Convolutional Neural Network
(CNN) with one fully connected layer to learn the time-domain
features. Then the proposed CNN-based feature learning mecha-
nism was integrated with the other standard classifiers to improve
the accuracy. The results demonstrated that the integration of
CNN structure as a feature extractor with the other conventional
classifier can improve the resulting classification performance.

2.2. Block
In the process of cardiac electrical activation, abnormal electrical
conduction occurs, so that the heart cannot normally contract and
pump blood, which is called conduction block. It mainly divided
into intro-atrial block, atrioventricular block (AVB) and bundle
branch block (BBB). At present, automatic detection methods
focused on BBB.

In 2007, Ilic16 employed the Continuous Wavelet Transform
(CWT) to detect the normal and left BBB (LBBB). In 2011,
Ceylan et al.17 proposed wavelet neural network (WNN) with
Morlet and Mexican hat wavelet functions as activation function
in hidden layer to classify LBBB, right BBB (RBBB) and nor-
mal types, achieving accuracies of 97.9% and 99.2% respectively.
In 2014, Kora and Kalva18 proposed a hybrid technique: Bacterial
Forging-Particle Swarm Optimization (BFPSO) for the feature
selection and used the Levenberg-Marquardt neural network to
classify LBBB, RBBB and normal types. This work achieved the
results with 98.2% (LBBB), 98.15 (RBBB) and 98.1% (Normal).
Huang et al.19 proposed a heartbeat classification method through
a combination of three different types of classifiers: a minimum
distance classifier, a weighted linear discriminant classifier and
support vector machine (SVM). The results showed a sensitivity
of 91.4% and a positive predictive value of 37.3% for LBBB and

a sensitivity of 92.8% and a positive predictive value of 88.8%
for RBBB. In 2005, Yuksel and Bekir20 proposed a new neural
network structure based on fuzzy clustering (FCNN) for BBB
classification the results showed that FCNN method gave better
recognition rates for mixed classification.

2.3. Ventricular Premature Contraction
Before the sinus node impulse has reached the ventricle, an
electrical impulse is caused by an electrical impulse in advance
of any site in the ventricle or the ectopic rhythm of the inter-
ventricular septum, causing ventricular depolarization, known as
premature ventricular contraction (PVC). It has a high incidence
in adults and can cause other diseases. Frequent PVC can be
complicated by syncope, angina, and heart failure, which poses
a great health threat to the elderly. There are many researchers
dedicated to the automatic detection of PVC. SVM, neural net-
work, wavelet analysis, Gaussian mixture model, decision trees,
multi-domain feature extraction, etc., were commonly used.
Benali et al.21 used the supervised classifiers and efficient fea-

tures to detect PVC automatically, and the accuracy achieved
about 97.14%. Saibal et al.22 proposed a model with a feature
extractor based on cross-correlation approach and an Artificial
Neural Network (ANN) classifier to detect PVC with an accu-
racy of 95.24%. Vessela et al.23 developed a three processing
stages-based method, including preprocessing filtration, heartbeat
detection and heartbeat classification by estimation of the inter
beat differences of the RR intervals and the QRS morphological
descriptors, and obtained sensitivity of 92.2% and specificity of
96%. Using fuzzy C-means clustering algorithm, Sutar et al.24

develop an classifier to use the features of informational entropy
and mean Teager energy, and achieved sensitivity of 97.78% and
PPV of 97.28%.

2.4. Premature Atrial Contraction
Premature atrial contraction (PAC) occurs at a high rate, com-
monly followed by PVC. Its main manifestations are palpitation,
chest distress, uncomfortable dizziness in the precordial area and
intermittent pulse.
Vessela et al.23 proposed a method for PAC detection based

on QRS morphological descriptors and the RR-interval informa-
tion, achieving a sensitivity of 88%. Khazaee et al.25 proposed a
power spectral-based hybrid genetic algorithm-SVM (SVMGA)
method and achieved sensitivity of 98.93% sensitivity, specificity
of 99.42% and PPV of 97.56%. In Ref. [26], two-layered Hid-
den Markov Models (HMMs) were employed to classify normal,
PVC and PAC, obtaining a sensitivity of 99.21% and PPV of
95.57% for PAC beats.

2.5. Heartbeat Classification
Sections 2.1–2.4 mainly described the detection methods for one
arrhythmia type. In fact, more papers have been focused on the
multiple classification.
Yeh et al.27 proposed a cluster analysis (CA) method and

obtained sensitivity as 95.59%, 91.32%, 90.50%, 94.51% and
93.77% for normal, LBBB, RBBB, PVC, and PAC respectively,
with a total classification accuracy of 94.30%. Teijeiro et al.15

proposed a novel knowledge-based approach to classify five
beat classes in the MIT-BIH arrhythmia and obtained a sensi-
tivity of 94.63% and PPV of 96.79% for multiple classification.
In 2017, Rajpurkar et al.28 built a dataset with of 64,121 ECG
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records from 29,163 patients and trained 34-layer CNN to detect
14 rhythm classes. The database was much larger than other
datasets, such as MIT/BIH. The model outperformed the aver-
age cardiologist performance on most rhythms, noticeably out-
performing the cardiologists in the AV block set of arrhythmias
which includes Mobitz I (Wenckebach), Mobitz II (AVB Type2)
and complete heart block (CHB).

2.6. Ischemic Disease
Ischemic disease is an important cause of death worldwide,
responsible for more than 8 million deaths globally every year.2

If persistent, ischemia will lead to cell death and permanent dam-
age to the heart muscle causing a myocardial infarction (MI).
The main characteristics in ECGs are ST segment elevation or
depression, T wave abnormality, the development of pathological
Q waves.6 ST-segment deviation is the most widely used feature
for ischemic disease and MI detection.29

In 1984, Gallino et al.30 analyzed the ST-segment deviation
of 2-lead ECGs on 24 hour Holter monitor tapes. Concurrently,
Mitchell31 and Sun32 used Karhunen-Loeve transform (KLT)
to analyze the ST-segment changes. Then, principal component
analysis (PCA) was applied. Diamantaras33 proposed a nonlin-
ear PCA method to the extracted ST segment. Recently, vari-
ous advanced methods are used to identify ischemic disease and
MI detection. In 2008, Gharaviri34 proposed an adaptive neuro-
fuzzy interface system (ANFIS) classifier to classify the ST seg-
ment elevation and depression, which obtained a sensitivity of
88.62% and a specificity of 99.65%. In 2012, Arif et al.35 used
K-nearest neighbor (KNN) to develop an automatic method for
MI localization, using the features of T wave amplitude, Q wave
amplitude and ST deviation measure and achieving overall clas-
sification accuracy of 98.3%. Sun et al.36 proposed the latent
topic multiple instance learning method to build a totally auto-
matic ECG classification procedure, which achieved a good per-
formance on recognition of ECGs related to MI. In 2015, Murthy
and Meenakshi37 provided the comparison of performance of
ANN, SVM and KNN models for cardiac ischemia classification.
In 2016, Padhy and Dandapat38 employed a third-order tensor

Table I. Data profile for the training and testing sets.

# recording of each hospital Time length (s)# total
Challenge set Type A B C D E F G H I J K recording Mean SD Min Median Max

Training Normal 73 90 74 73 70 90 77 76 78 77 140 918 15�43 7�61 10�00 13�00 60�00
AF 45 184 28 26 138 155 280 104 27 47 64 1098 15�01 8�39 9�00 11�00 60�00

I-AVB 39 71 0 8 150 129 212 19 15 27 34 704 14�32 7�21 10�00 11�27 60�00
LBBB 7 12 7 2 41 30 51 13 9 18 17 207 14�92 8�09 9�00 12�00 60�00
RBBB 79 272 29 30 423 205 401 140 26 30 60 1695 14�42 7�60 10�00 11�19 60�00
PAC 57 147 4 8 105 24 111 50 2 57 9 574 19�46 12�36 9�00 14�00 60�00
PVC 76 111 3 21 150 80 132 13 18 32 17 653 20�21 12�85 6�00 15�00 60�00
STD 117 22 32 525 36 52 1 26 15 826 15�13 6�82 8�00 12�78 60�00
STE 3 90 6 7 38 12 16 0 22 0 8 202 17�15 10�72 10�00 11�89 60�00

Total/Average 490 980 169 202 1645 762 1338 416 223 288 364 6877 15�79 9�04 6�00 12�00 60�00

Test Normal 31 38 32 32 30 38 33 33 34 33 60 394 15�91 – – – –
AF 19 79 12 11 59 66 120 44 11 20 28 469 17�31 – – – –

I-AVB 17 30 0 3 64 56 91 8 6 11 15 301 15�34 – – – –
LBBB 3 5 3 1 18 13 22 5 4 8 8 90 16�51 – – – –
RBBB 34 116 13 13 181 88 173 61 12 13 25 729 16�53 – – – –
PAC 23 65 1 3 45 12 48 22 3 24 4 250 23�06 – – – –
PVC 30 49 2 10 65 33 56 6 8 15 7 281 21�28 – – – –
STD 50 0 9 14 225 16 23 0 11 0 6 354 14�93 – – – –
STE 2 38 2 3 16 5 7 0 10 0 3 86 22�46 – – – –

Total/Average 209 420 74 90 703 327 573 179 99 124 156 2954 18�15 – – – –

structure to represent the multi-lead ECG signals and used the
modern singular values and normalized multiscale wavelet energy
as the input features. This work achieved the detection accu-
racy of 95.30%, with sensitivity and specificity of 94.6% and
96.0%, respectively. There are many published papers on auto-
matic diagnosis of myocardial ischemic and myocardial infarc-
tion. Literature6 gives a detailed overview and the readers can
refer to this article.

3. DESCRIPTION OF THE 2018 CHINA
PHYSIOLOGICAL SIGNAL CHALLENGE

3.1. Main Aim
The China Physiological Signal Challenge (CPSC) 2018 is the
1st China Physiological Signal Challenge, aiming to provide a
platform for the open-source data and algorithms for the phys-
iological signal analysis, and thus to promote the open-source
research pattern for the cardiovascular disease detection and
prediction in China. The practical objective is to identify the
rhythm/morphology abnormalities from 12-lead ECGs, lasting
several seconds to tens of seconds.

A number of studies have investigated the performances of
different detection/classification methods for the abnormal ECG
types. However, many studies are generally limited in applicabil-
ity because (1) the classification of normal and only one single
abnormality was performed; (2) the data were not sufficient with-
out the use of a separate out of sample test dataset and only a
small number of subjects were used, almost certainly resulting in
over-fitting of the model and inflated statistics; (3) failure to post
the data (and any code to process the data) publicly so others
may compare their results directly. Therefore, this challenge con-
tributes a more comprehensive database to address these issues,
including one normal type and eight abnormal types, which are
detailed as:
(1) Atrial fibrillation (AF)
(2) First-degree atrioventricular block (I-AVB)
(3) Left bundle brunch block (LBBB)
(4) Right bundle brunch block (RBBB)
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Fig. 1. The age distribution of training and test set.
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Fig. 2. Example of a 12-lead ECG waveforms (AF and RBBB).

(5) Premature atrial contraction (PAC)
(6) Premature ventricular contraction (PVC)
(7) ST-segment depression (STD)
(8) ST-segment elevated (STE).

3.2. Challenge Data
The challenge ECG recordings were collected from 11 hospi-
tals and were generously donated for this Challenge. In order
to protect the privacy of patients, the hospital names are not
disclosed here. 11 hospitals are represented by A–K 11 let-
ters. All data from 11 hospitals were combined to constitute
the challenge database. The database was divided into both
training and test sets with a random 70−30 training-test split.
The training set contains 6,877 (female: 3178; male: 3699) 12
leads ECG recordings lasting from 6 s to just 60 s and the
test set contains 2,954 (female: 1416; male: 1538) ECG record-
ings with the similar lengths. Table I shows the details of these
two data sets, including the data source, recording information.
Figure 1 illustrates the patients’ age distribution and so on.
The test set is unavailable to the public and will remain private
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for the purpose of scoring. ECG recordings were sampled as
500 Hz. All data are provided in MATLAB format (each record-
ing is a .mat file containing the ECG data, as well as the patient
sex and age information).

In both training and test sets, ECG signal recordings were
divided into 9 types. For the most data, each recording has
only one label. While, some recordings have two or three labels
because the patient who provided the signals suffers from mul-
tiple diseases simultaneously. There are 477 and 203 subjects
of this multi-label type in the training and test sets respectively.
Figure 2 illustrates an example of the 12-lead ECG waveforms
with AF and RBBB. For this multi-label situation, as long as the
result provided by the contestant is consistent with one of the
labels, we consider this to be a correct result.

3.3. Scoring Mechanism
The overall score is computed based on the number of recordings
classified as nine types. The scoring for CPSC2018 uses a F1
measure, which is an average of the nine F1 values from each
classification type. The counting rules for the numbers of the
variables are defined in Table II.

For each of the nine types, F1 is defined as:

Normal: F11 =
2×N11

N1X +NX1
(1)

AF: F12 =
2×N22

N2X +NX2
(2)

I-AVF: F13 =
2×N33

N3X +NX3
(3)

LBBB: F14 =
2×N44

N4X +NX4
(4)

RBBB: F15 =
2×N55

N5X +NX5
(5)

PAC: F16 =
2×N66

N6X +NX6

(6)

PVC: F17 = 2×N77

N7X +NX7
(7)

STD: F18 =
2×N88

N8X +NX8
(8)

STE: F19 =
2×N99

N9X +NX9
(9)

Table II. Counting rules for the numbers of the variables.

Predicted

Normal AF I-AVB LBBB RBBB PAC PVC STD STE Total

Reference
Normal N11 N12 N13 N14 N15 N16 N17 N18 N19 N1X

AF N21 N22 N23 N24 N25 N26 N27 N28 N29 N2X

I-AVB N31 N32 N33 N34 N35 N36 N37 N38 N39 N3X

LBBB N41 N42 N43 N44 N45 N46 N47 N48 N49 N4X

RBBB N51 N52 N53 N54 N55 N56 N57 N58 N59 N5X

PAC N61 N62 N63 N64 N65 N66 N67 N68 N69 N6X

PVC N71 N72 N73 N74 N75 N76 N77 N78 N79 N7X

STD N81 N82 N83 N84 N85 N86 N87 N88 N89 N8X

STE N91 N92 N93 N94 N95 N96 N97 N98 N99 N9X

Total NX1 NX2 NX3 NX4 NX5 NX6 NX7 NX8 NX9

The final challenge score is defined as follows:

F1 = F11+F12+F13+F14+F15+F16+F17+F18+F19
9

(10)

In addition, we also calculate the F1 measures for each of the four
sub-abnormal types, i.e., the AF, block, premature contraction
and ST-segment change, as follows:

AF: FAF = 2×N22

N2X +NX2

(11)

Block: FBlock = 2× �N33+N44+N55�

N3X +NX3+N4X +NX4+N5X +NX5

(12)

Premature contraction: FPC = 2× �N66+N77�

N6X +NX6+N7X +NX7
(13)

ST-segment change: FST =
2× �N88+N99�

N8X +NX8+N9X +NX9
(14)

4. DISCUSSION
This paper presents an introduction for the database used in
CPSC 2018, including the data source, recording information,
patients’ clinical baseline parameters (age and gender). Mean-
while, it also presents the common detection/classification meth-
ods for the abovementioned abnormal ECG types.

At present, there are various published ECG databases for eval-
uating the ECG abnormalities classification. MIT-BIH arrhyth-
mic database39 is the most frequently used one, consisting of
48 records at 360 Hz for approximately 30 min from 47 differ-
ent patients.9 This database contains 15 recommended classes of
arrhythmia, which are further classified into five super-classes:
normal (N ), supraventricular ectopic beat (SVEB), ventricular
ectopic beat (VEB), fusion beat (F ) and unknown beat (Q).40

The European ST-T database was the standard for evaluating
ST-T changes in ambulatory ECG,11 which consists of 90 records
acquired from 79 subjects suffering myocardial ischemia, sam-
pled at 250 Hz. The MIT-BIH Atrial Fibrillation Database12

includes 25 long-term ECG AF recordings (mostly paroxysmal),
providing a database for evaluating AF detection method. These
databases contained one disease or one type abnormal. Thus the
evaluations focus on only one or a few combination of disease
abnormalities, such as AF,4�5 ST change,6�7 etc.

To address this issue, CPSC 2018 contains more abnormal
types (normal type and eight abnormal types). The public release
of such a database has many potential benefits to a wide range
of users. The data of 9,831 records from 9,458 patients were
sufficient to use a separate out of sample test dataset. The avail-
ability of these data can encourage various researchers to develop
innovative algorithms.

Conflicts of Interest Statement
There is no conflict of interest to this work.

Acknowledgments: This work was supported by the
National Natural Science Foundation of China (61571113),
Key Research and Development Programs of Jiangsu Province
(BE2017735), Shandong Provincial Natural Science Foun-
dation in China (ZR2014EEM003), Fundamental Research
Funds for the Central Universities in Southeast University
(2242018k1G010).

1372



R E S E A R CH A R T I C L EJ. Med. Imaging Health Inf. 8, 1368–1373, 2018

References and Notes
1. C. Y. Liu, D. Springer, Q. Li, B. Moody, R. A. Juan, F. J. Chorro, F. Castells,

J. M. Roig, I. Silva, A. E. W. Johnson, Z. Syed, S. E. Schmidt, C. D. Papadaniil,
L. Hadjileontiadis, H. Naseri, A. Moukadem, A. Dieterlen, C. Brandt, H. Tang,
M. Samieinasab, M. R. Samieinasab, R. Sameni, R. G. Mark, and G. D.
Clifford, An open access database for the evaluation of heart sound algo-
rithms. Physiological Measurement 37, 2181 (2016).

2. W. H. Organization, Global health estimates: Deaths by cause, age, sex and
country, 2000–2015, WHO, Geneva, Switzerland (2017).

3. Y. C. Yeh and W. J. Wang, QRS complexes detection for ECG signal: The dif-
ference operation method. Computer Methods and Programs in Biomedicine
91, 245 (2008).

4. U. Maji, M. Mitra, and S. Pal, Automatic detection of atrial fibrillation using
empirical mode decomposition and statistical approach. Procedia Technology
10, 45 (2013).

5. B. Pourbabaee, M. J. Roshtkhari, and K. Khorasani, Feature leaning with deep
convolutional neural networks for screening patients with paroxysmal atrial
fibrillation, International Joint Conference on Neural Networks, Vancouver, BC,
Canada (2016), pp. 5057–5064.

6. S. Ansari, N. Farzaneh, M. Duda, K. Horan, and H. B. Andersson, A review of
automated methods for detection of myocardial ischemia and infarction using
electrocardiogram and electronic health record. IEEE Reviews in Biomedical
Engineering 10, 264 (2017).

7. ANSI/AAMI, Testing and reporting performance results of cardiac rhythm and
ST segment measurement algorithms, American National Standards Insti-
tute, Inc. (ANSI), Association for the Advancement of Medical Instrumentation
(AAMI) 1998-(R)2008 (2008).

8. S. Lévy, A. J. Camm, S. Saksena, E. Aliot, G. Breithardt, H. Crijns, W. Davies,
N. Kay, E. Prystowsky, R. Sutton, A. Waldo, D. G. Wyse, Working Group
on Arrhythmias, Working Group on Cardiac Pacing of the European Society
of Cardiology, and North American Society of Pacing and Electrophysiology,
International consensus on nomenclature and classification of atrial fibrillation;
a collaborative project of the working group on arrhythmias and the working
group on cardiac pacing of the european society of cardiology and the North
American society of pacing and electrophysiology. Journal of Cardiovascular
Electrophysiology 14, 443 (2003).

9. G. B. Moody and R. G. Mark, The impact of the MIT-BIH arrhythmia
database. IEEE Engineering in Medicine and Biology Magazine 20, 45
(2002).

10. R. E. Hermes, D. B. Geselowitz, and G. C. Oliver, Development, distribution,
and use of the American heart association database for ventricular arrhythmia
detector evaluation. Computers in Cardiology 20, 263 (1980).

11. A. Taddei, G. Distante, M. Emdin, P. Pisani, G. B. Moody, C. Zeelenberg, and
C. Marchesi, The European ST-T database: Standard for evaluating systems
for the analysis of ST-T changes in ambulatory electrocardiography. European
Heart Journal 13, 1164 (1992).

12. G. Moody and R. Mark, A new method for detecting atrial fibrillation using
R–R intervals. Computers in Cardiology 10, 227 (1983).

13. G. K. Andrikopoulos, P. E. Dilaveris, D. J. Richter, E. J. Gialafos, A. G.
Synetos, and J. E. Gialafos, Increased variance of P wave duration on the
electrocardiogram distinguishes patients with idiopathic paroxysmal atrial fib-
rillation. Pacing and Clinical Electrophysiology 23, 1127 (2000).

14. R. Lepage, J. M. Boucher, J. J. Blanc, and J. C. Cornilly, ECG segmen-
tation and P -wave feature extraction: Application to patients prone to atrial
fibrillation, Engineering in Medicine and Biology Society, 2001, Proceedings
of the International Conference of the IEEE, Istanbul, Turkey (2001), Vol. 1,
pp. 298–301.

15. T. Teijeiro, P. Felix, J. Presedo, and D. Castro, Heartbeat classification using
abstract features from the abductive interpretation of the ECG. IEEE Journal
of Biomedical and Health Informatics 22, 409 (2016).

16. S. S. Ilic, Detection of the left bundle branch block in continuous
wavelet transform of ECG signal. Elektronika Ir Elektrotechnika 74, 33
(2007).

17. R. Ceylan and Y. Ozbay, Wavelet neural network for classification of bun-
dle branch blocks. Lecture Notes in Engineering and Computer Science
2191, 1003 (2011).

18. P. Kora and S. R. Kalva, Hybrid bacterial foraging and particle swarm opti-
mization for detecting bundle branch block, Springerplus 4, 48 (2015).

19. H. Huang, J. Liu, Q. Zhu, R. Wang, and G. Hu, Detection of inter-patient left
and right bundle branch block heartbeats in ECG using ensemble classifiers.
Biomedical Engineering Online 13, 72 (2014).

20. Y. Özbay, R. Ceylan, and B. Karlik, A fuzzy clustering neural network architec-
ture for classification of ECG arrhythmias, Computers in Biology and Medicine
36, 376 (2006).

21. R. Benali, F. B. Reguig, and Z. H. Slimane, Automatic classification of heart-
beats using wavelet neural network. J. Med Syst 36, 883 (2012).

22. A. C. Saibal Dutta and Sugata Munshi, Identification of ECG beats from
cross-spectrum information aided learning vector quantization. Measurement
2, 2020 (2011).

23. I. I. J. Vessela, T. Krasteva, and I. I. Christov, Automatic detection of premature
atrial contractions in the electrocardiogram. Electrotechniques and Electronics
2, 49 (2006).

24. R. G. Sutar and A. G. Kothari, Intelligent electrocardiogram pattern classifi-
cation and recognition using low-cost cardio-care system. IET Science, Mea-
surement and Technology 9, 134 (2015).

25. A. Khazaee and A. Ebrahimzadeh, Classification of electrocardiogram signals
with support vector machines and genetic algorithms using power spectral
features. Biomedical Signal Processing and Control 5, 252 (2010).

26. W. Liang, Y. Zhang, J. Tan, and Y. Li, A novel approach to ECG classification
based upon two-layered HMMs in body sensor networks. Sensors (Basel)
14, 5994 (2014).

27. Y. C. Yeh, C. W. Chiou, and H. J. Lin, Analyzing ECG for cardiac arrhythmia
using cluster analysis. Expert Systems with Applications 39, 1000 (2012).

28. P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, C. Bourn, and A. Y. Ng,
Cardiologist-level arrhythmia detection with convolutional neural networks.
Computer Vision and Pattern Recognition arXiv:1707.01836v1, 1 (2017).

29. H. L. Lu, K. Ong, and P. Chia, An automated ECG classification system based
on a neuro-fuzzy system, Computers in Cardiology, Cambridge, MA, USA
(2000), pp. 387–390.

30. A. Gallino, S. Chierchia, G. Smith, M. Croom, M. Morgan, C. Marchesi, and
A. Maseri, Computer system for analysis of ST segment changes on 24 hour
Holter monitor tapes: Comparison with other available systems. Journal of the
American College of Cardiology 4, 245 (1984).

31. M. W. Krucoff, M. A. Croll, L. P. Pendley, and D. L. Burdette, Continu-
ous computer-assisted electrocardiographic monitoring in patients with acute
myocardial infarction: Early experience, Computers in Cardiology, Jerusalem,
Israel (1989), pp. 197–200.

32. G. Sun, C. W. Thomas, J. Liebman, and Y. Rudy, Classification of normal and
ischemia from BSPM by neural network approach, Engineering in Medicine
and Biology Society, 1988, Proceedings of the International Conference of the
IEEE, New Orleans, LA, USA (1988), Vol. 3, pp. 1504–1505.

33. K. I. Diamantaras and S. Y. Kung, Principal Component Neural Networks:
Theory And Applications, John Wiley & Sons, Inc., New York, NY, USA (1996).

34. A. Gharaviri, M. Teshnehlab, and H. A. Moghaddam, Ischemia detection via
ECG using ANFIS, 2008 30th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, Vancouver, BC, Canada (2008),
pp. 1163–1166.

35. M. Arif, I. A. Malagore, and F. A. Afsar, Detection and localization of myocar-
dial infarction using K -nearest neighbor classifier. Journal of Medical Systems
36, 279 (2012).

36. L. Sun, Y. Lu, K. Yang, and S. Li, ECG analysis using multiple instance learn-
ing for myocardial infarction detection. IEEE Trans. Biomed. Eng. 59, 3348
(2012).

37. H. S. N. Murthy and D. M. Meenakshi, ANN, SVM and KNN classifiers for
prognosis of cardiac ischemia—A comparison. Bonfring International Journal
of Research in Communication Engineering 5, 7 (2015).

38. S. Padhy and S. Dandapat, Third-order tensor based analysis of multilead
ECG for classification of myocardial infarction. Biomedical Signal Processing
and Control 31, 71 (2017).

39. A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G.
Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley, Physiobank,
physiotoolkit, and physionet components of a new research resource for com-
plex physiologic signals. Circulation 101, e215 (2000).

40. E. J. D. Luz, W. R. Schwartz, G. Camara-Chavez, and D. Menotti, ECG-based
heartbeat classification for arrhythmia detection: A survey. Computer Methods
and Programs in Biomedicine 127, 144 (2016).

Received: 3 April 2018. Revised/Accepted: 16 April 2018.

1373


